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Chosen-ciphertext attacks (CCA) are typical threat on public-key en-
cryption schemes. We show direct chosen-ciphertext security modifi-
cation in the case of attribute-based encryption (ABE), where an ABE
scheme secure against chosen-plaintext attacks (CPA) is converted into
an ABE scheme secure against CCA by individual techniques. Our mod-
ification works in the setting that the Diffie-Hellman tuple to be verified
in decryption is in the target group of a bilinear map. The employed
techniques result in expansion of the secret-key length and the decryp-
tion cost by a factor of four, while the public-key and the ciphertext
lengths and the encryption cost remain almost the same.

1 Introduction

Access control is one of the fundamental processes
and requirements in cybersecurity. Attribute-based
encryption (ABE) invented by Sahai and Waters [1],
where attributes mean authorized credentials, enables
to realize access control which is functionally close to
role-based access control (RBAC), but by encryption.
In key-policy ABE (KP-ABE) introduced by the sub-
sequent work of Goyal, Pandey, Sahai and Waters [2],
a secret key is associated with an access policy over
attributes, while a ciphertext is associated with a set
of attributes. In a dual manner, in ciphertext-policy
ABE (CP-ABE) [2[3 [4], a ciphertext is associated with
an access policy over attributes, while a secret key is
associated with a set of attributes. In a KP-ABE or
CP-ABE scheme, a secret key works to decrypt a ci-
phertext if and only if the associated set of attributes
satisfies the associated access policy. The remarkable
feature of ABE is attribute privacy; that is, in decryp-
tion, no information about the access policy and the
identity of the secret key owner in the case of KP-
ABE (or, the attributes and the identity of the secret
key owner in the case of CP-ABE) leaks except the
fact that the set of attributes satisfies the access pol-
icy. Since the proposals, it has been studied to attain
certain properties such as indistinguishability against
chosen-plaintext attacks (IND-CPA) in the standard
model [4] and adaptive security against adversary’s

choice of a target access policy [5].

In this papelﬂ we work through resolving a prob-
lem of constructing a shorter ABE scheme that attains
indistinguishability against chosen-ciphertext attacks
(IND-CCA) in the standard model. Here CCA means
that an adversary can collects decryption results of
ciphertexts of its choice through adversaries’ attack-
ing. Note that “provable security” of a cryptographic
primitive is now a must requirement when we em-
ploy the primitive in a system, where it means that
an appropriately defined security is polynomially re-
duced to the hardness of a computational problem.
Moreover, the CCA security of an encryption scheme
is preferable to attain because the CCA security is one
of the theoretically highest securities and hence the
scheme can be used widely.

To capture the idea of our approach, let us re-
call the case of identity-based encryption (IBE). The
CHK transformation of Canetti, Halevi and Katz [7]]
is a generic tool for obtaining IND-CCA secure IBE
scheme. It transforms any hierarchical IBE (HIBE)
scheme that is selective-ID IND-CPA secure [8] into
an IBE scheme that is adaptive-ID IND-CCA secure
[8]. A point of the CHK transformation is that it in-
troduces a dummy identity vk that is a verification
key of a one-time signature. Then a ciphertext is at-
tached with vk and a signature o, which is generated
each time one executes encryption. In contrast, the
direct chosen-ciphertext security technique for IBE of
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Boyen, Mei and Waters [9] is individual modification
for obtaining an IND-CCA secure IBE scheme. It con-
verts a HIBE scheme that is adaptive-ID IND-CPA
secure into an IBE scheme that is adaptive-ID IND-
CCA secure. Though the technique needs to treat each
scheme individually, the obtained scheme attains bet-
ter performance than that obtained by the generic tool
(the CHK transformation). Let us transfer into the
case of ABE. The transformation in [10] is a generic
tool for obtaining IND-CCA secure ABE scheme. It
transforms any ABE scheme (with the delegatability
or the verifiability [10]) that is IND-CPA secure into
an ABE scheme that is IND-CCA secure. A point of
their transformation is, similar to the case of IBE, that
it introduces a dummy attribute vk that is a verifica-
tion key of a one-time signature. Then a ciphertext is
attached with vk and a signature o. Notice here that
discussing direct chosen-ciphertext security modifi-
cation for ABE (in the standard model) is a missing
piece. One of the reasons seems that there is an obsta-
cle that a Diffie Hellman tuple to be verified is in the
target group of a bilinear map. In that situation, the
bilinear map looks of no use.

1.1 Owur Contribution

A contribution is that we fill in the missing piece; we
demonstrate direct chosen-ciphertext security modi-
fication in the case of the Waters CP-ABE scheme [4]]
and the KP-ABE scheme of Ostrovsky, Sahai and Wa-
ters [11]] To overcome the above obstacle, we employ
the technique of the Twin Diffie-Hellman Trapdoor
Test of Cash, Kiltz and Shoup [12]. In addition, we
also utilize the algebraic trick of Boneh and Boyen
[13] and Kiltz [14] to reply for adversary’s decryption
queries.

1.2 Related Works

Waters [4] pointed out that IND-CCA security would
be attained by the CHK transformation. Gorantla,
Boyd and Nieto [15] constructed a IND-CCA secure
CP-ABKEM in the random oracle model. In [10] the
authors proposed a generic transformation of a IND-
CPA secure ABE scheme into a IND-CCA secure ABE
scheme. Their transformation is considered to be an
ABE-version of the CHK transformation, and it is ver-
satile. Especially, it can be applied to non-pairing-
based scheme.

The Waters CP-ABE [4] can be captured as a CP-
ABKEM: the blinding factor can be considered as a
random one-time key. This Waters CP-ABKEM is
IND-CPA secure because the Waters CP-ABE is proved
to be IND-CPA secure. For theoretical simplicity, we
demonstrate an individual conversion of the Waters
CP-ABKEM into a CP-ABKEM which is IND-CCA se-
cure. Then we provide a CP-ABE scheme which is
IND-CCA secure. As for KP-ABE, we demonstrate an
individual conversion of KP-ABKEM of Ostrovsky, Sa-
hai and Waters [11]], which is IND-CPA secure, into a
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KP-ABKEM which is IND-CCA secure. Then we pro-
vide a KP-ABE scheme which is IND-CCA secure.

Finally, we note that there is a remarkable work of
CP-ABE schemes and KP-ABE schemes with constant-
size ciphertexts [16},[17]. Our direct chosen-ciphertext
security modification is not constant-size ciphertexts
but a different approach for easier implementation in
engineering.

1.3 Organization of the Paper

In Section|2} we survey concepts, definitions and tech-
niques needed. In Section |3 we revisit the concept,
the algorithm and the security of the twin Diffie-
Hellman technique. In Section[4} we construct a CCA-
secure CP-ABKEM from the Waters CPA-secure CP-
ABKEM [4]], and provide a security proof. Also, we
describe the encryption version, a CCA-secure CP-
ABE. In Section we construct a CCA-secure KP-
ABKEM from the Ostrovsky-Sahai-Waters CPA-secure
KP-ABKEM [11]], and provide a security proof. Also,
we describe the encryption version, a CCA-secure KP-
ABE. In Section [6} we compare efficiency of our CP-
ABE and KP-ABE schemes with the original schemes,
and also, with the schemes obtained by applying the
generic transformation [10]] to the original schemes.
In Section [7} we conclude our work.

2 Preliminaries

The security parameter is denoted A. A prime of bit
length A is denoted p. A multiplicative cyclic group
of order p is denoted G. The ring of exponent domain
of G, which consists of integers from 0 to p — 1 with
modulo p operation, is denoted Z,,.

2.1 Bilinear Map

We remark first that our description in the subsequent
sections is in the setting of a symmetric bilinear map
for simplicity, but we can employ an asymmetric bi-
linear map instead for better efficiency as is noted in
Section [6] Let G and Gt be two multiplicative cyclic
groups of prime order p. Let g be a generator of G and
e be a bilinear map, e: G x G — Gr. The bilinear map
e has the following properties:

1. Bilinearity: for all u,v € G and a,b € Zp, we have
e(u®,v?) = e(u,v)™.

2. Non-degeneracy: e(g,g) # idg, (: the identity ele-
ment of the group Gr).

Parameters of a bilinear map are generated by a
probabilistic polynomial time (PPT) algorithm Grp on
input A: (p,G,Gr, g, e) < Grp(A).

Hereafter we assume that the group operation in
G and Gr and the bilinear map ¢ : G x G — Gr are
computable in PT in A.
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2.2 Access Structure

Let U ={x1,..., x,} be a set of attributes, or simply set
U =1{1,...,u} by numbering. An access structure, which
corresponds to an access policy, is defined as a collec-
tion A of non-empty subsets of I{; that is, A C 2“\{(},’)}.
An access structure A is called monotone if for any
B e A and Bc C, C € A holds. The sets in A are
called authorized sets, and the sets not in A are called
unauthorized sets. We will consider in this paper only
monotone access structures.

2.3 Linear Secret-Sharing Scheme

We only describe a linear secret-sharing scheme
(LSSS) in our context of attribute-based schemes. A
secret-sharing scheme IT over the attribute universe U/
is called linear over Z, if:

1. The shares for each attribute form a vector over Zp,
2. There exists a matrix M of size Ixn called the share-
generating matrix for IT and a function p which maps
each row index i of M to an attribute in ¢/ = {1,...,u}:
p:{l,.. I} = U.

To make shares, we first choose a random vector
V=(592..,9n) € Z;: s is a secret to be shared. For
i =1 to [, we calculate each share A; = v-M;, where M;
denotes the i-th row vector of M and - denotes the for-
mal inner product. LSSS IT = (M, p) defines an access
structure A through p.

Suppose that an attribute set S satisfies A (S € A)
and let Is = p~1(S) C {1,...,1}. Then, let {w; € Z,;i €
Is} be a set of constants (linear reconstruction constants)
such that if {1; € Z,;i € I} are valid shares of a secret
s according to M, then }_;c;, w;A; =s. It is known that
these constants {w;};c;; can be found in time polyno-
mial in [: the row size of the share-generating matrix
M. If S does not satisfy A (S ¢ A), then no such con-
stants {w;};es, exist.

2.4 Attribute-Based Key Encapsulation
Mechanism

Ciphertext-policy attribute-based key encapsula-
tion mechanism (CP-ABKEM). A CP-ABKEM con-
sists of four PPT algorithms (Setup, Encap, KeyGen,
Decapﬂ

Setup(A,U). A setup algorithm Setup takes as input
the security parameter A and the attribute universe
U ={1,...,u}. It returns a public key PK and a master
secret key MSK.

Encap(PK,A). An encapsulation algorithm Encap
takes as input the public key PK and an access struc-
ture A. It returns a random string x and its encapsu-
lation . Note that A is contained in .
KeyGen(PK,MSK,S). A key generation algorithm
KeyGen takes as input the public key PK, the mas-
ter secret key MSK and an attribute set S. It returns
a secret key SKg corresponding to S. Note that S is
contained in SKg.

Decap(PK,SKg, ). A decapsulation algorithm Decap
takes as input the public key PK, an encapsulation (we
also call it a ciphertext according to context) ¢ and a
secret key SKg. It first checks whether S € A, where
S and A are contained in SKg and 1, respectively. If
the check result is FaALsg, it puts € =1. It returns a
decapsulation result &.

Chosen-Ciphertext Attack on CP-ABKEM. Accord-
ing to previous works (for example, see [15]), the
chosen-ciphertext attack on a CP-ABKEM is formally
defined as the indistinguishability game (IND-CCA
game). In this paper, we consider the selective game
on a target access structure (IND-sel-CCA game); that
is, the adversary A declares a target access structure
A* before A receives a public key PK, which is defined
as the following experiment.

Experimentij{%},s_e,k'BC&’M (A U)

A" — A(MU), (PK,MSK) « Setup(A,U)
6(_AKeyGen(PK,MSK,~),Decap(PK,SK.,~)(PK)

(x*,1*) < Encap(PK, A*), x «— KeySp(A),b < {0,1}
Ifb=1thenk=x"else K =«
bV o— AKeyGen(PK,MSK,-),Decap(PK,SK,-)(ﬁ l,b*)

If b’ = b then return Win else return Losk.

In the above experiment, two kinds of queries are is-
sued by A. One is key-extraction queries. Indicating
an attribute set S;, A queries its key-extraction oracle
KeyGen(PK,MSK,-) for the secret key SKg,. Here we
do not require any input attribute sets S; and §;, to be
distinct. Another is decapsulation queries. Indicating
a pair (S;,1;) of an attribute set and an encapsulation,
A queries its decapsulation oracle Decap(PK,SK,,-) for
the decapsulation result ;. Here an access structure
A]-, which is used to generate an encapsulation 1,[)]-, is
implicitly included in ;. In the case that S ¢ A, k; =1
is replied to A. Both kinds of queries are at most gy
and g4 times in total, respectively, which are polyno-
mial in A.

The access structure A* declared by A is called a
target access structure. Two restrictions are imposed on
A concerning A*. In key-extraction queries, each at-
tribute set S; must satisfy S; ¢ A*. In decapsulation
queries, each pair (S;,1;) must satisfy S; € A"V ¢; =

P

The advantage of the adversary A over CP-ABKEM in
the IND-CCA game is defined as the following proba-
bility:

AV sien(LU)
d:efPr[Experimentjy%ﬁf}\g}fgwl(/\, U) returns WIn].
CP-ABKEM is called selectively secure against chosen-

ciphertext attacks if, for any PPT adversary A and for
any attribute universe U, Advj‘%ﬁiécﬁél\,l(/\,u ) is negli-
gible in A. Here we must distinguish the two cases;
the case that I/ is small (i.e. || = u is bounded by a

polynomial of 1) and the case that I/ is large (i.e. u

2In Gorantla, Boyd and Nieto [15], they say encapsulation-policy attribute-based-KEM (EP-AB-KEM) instead of saying ciphertext-policy

attribute-based KEM here.
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is not necessarily bounded by a polynomial of 1). We
assume the small case in this paper.

In the indistinguishability game against chosen-
plaintext attack (IND-CPA game), the adversary A is-
sues no decapsulation query (that is, g4 = 0).
Ciphertext-Policy  Attribute-Based  Encryption
Scheme (CP-ABE). In the case of the encryp-
tion version (i.e. CP-ABE), Encap(PK,A) and
Decap(PK,SKg, ) are replaced by PPT algorithms
Encrypt(PK, A, m) and Decrypt(PK,SKs,CT), respec-
tively, where m and CT mean a message and a cipher-
text, respectively.

The IND-CCA game for CP-ABE is defined in the
same way as for CP-ABKEM above, except the fol-
lowing difference. In Challenge phase, the adversary
A submits two equal length messages (plaintexts)
and my. Then the challenger flips a coin b € {0,1} and
gives an encryption result CT of m; to A. In Guess
phase, the adversary A returns b’ € {0,1}. If b’ = b,
then A wins in the IND-CCA game. Otherwise, A
loses.

Key-Policy Attribute-Based Key Encapsulation
Mechanism (KP-ABKEM) and Encryption Scheme
(KP-ABE). The key-policy case is analogously defined
as the case of the ciphertext-policy case. We state
only the syntax and the security experiment of the
key-policy ABKEM.

Setup(A,U). A setup algorithm Setup takes as input
the security parameter A and the attribute universe
U ={1,...,u}. It returns a public key PK and a master
secret key MSK.

Encap(PK,S). An encapsulation algorithm Encap
takes as input the public key PK and an attribute set
S. It returns a random string «x and its encapsulation
. Note that S is contained in 1.
KeyGen(PK,MSK,A). A key generation algorithm
KeyGen takes as input the public key PK, the master
secret key MSK and an access structure A. It returns
a secret key SKp corresponding to S. Note that A is
contained in SKp.

Decap(PK,SKp,1). A decapsulation algorithm De-
cap takes as input the public key PK, an encapsula-
tion (we also call it a ciphertext according to context)
Y and a secret key SKp. It first checks whether S € A.
If the check result is Fatsg, it puts € =1. It returns a
decapsulation result «.

Chosen-Ciphertext Attack on KP-ABKEM. The selec-
tive game on a target attribute set (IND-sel-CCA game)
is defined by the following experiment.

Experimentiﬁ‘iﬁ‘ﬁ\gﬁgM (A U)

S* « AL U), (PK,MSK) « Setup(, )
6(_AKeyGen(PK,MSK,-),Decap(PK,SK_,-)(PK)

(x",9") < Encap(PK, S"), k < KeySp(A),b < {0,1}
Ifb=1thenk=«x"else £ =«

b — AKeyGen(PK,MSK,-),Decap(PK,SKA,-)(1%’ w*)

If b’ = b then return Win else return LosE.

www.astesj.com

2.5 Target Collision Resistant Hash Func-
tions

Target collision resistant (TCR) hash functions [18]
are treated as a family. Let us denote a function fam-
ily as Hfam(}) = {H,,} seHkey(1)- Here HKey(A) is a hash
key space, p € HKey(A) is a hash key and H, is a func-
tion from {0, 1}* to {0,1}*. We may assume that H, is
from {0,1}" to Z,, where p is a prime of length A.

Given a PPT algorithm CF, a collision finder, we
consider the following experiment (the target colli-
sion resistance game).

Experiment}f}nyam(A)
m* «— CF(A), p — HKey(A), m < CF (p)
If m*=mAH,(m") = H,(m)

then return Win else return Losk.

Then we define CF’s advantage over Hfam in the game
of target collision resistance as follows.

AdVEC}I:,Hfam (/\)

défPlr[Experiment}fFr Hfam(A) Teturns Win|.

We say that Hfam is a TCR function family if, for any

PPT algorithm CF, Advg;nyam(/\) is negligible in A.
TCR hash function families can be constructed

based on the existence of a one-way function [18].

3 The Twin Diffie-Hellman Tech-
nique Revisited

A 6-tuple (g,X1,X,,Y,Z1,Z,) € G° is called a
twin Diffie-Hellman tuple if the tuple is written as
(g,8%,9%2,9%,9%17,g*2Y) for some elements xq,x;,7 in
Zp. In other words, a 6-tuple (g,X1,X5,Y,Z1,Z;) is a
twin Diffie-Hellman tuple (twin DH tuple, for short)
if Y =¢Yand Z; :Xf and Z, :Xg.

The following lemma of Cash, Kiltz and Shoup
will be used in the security proof to decide whether
a tuple is a twin DH tuple or not.

Lemma 1 (“Trapdoor Test”[12]]) Let X;,r,s be mutu-
ally independent random variables, where X, takes values
in G, and each of r,s is uniformly distributed over Z,,.
Define the random variable X, = X{"g°. Suppose that
Y, 21,22 are random variables taking values in G, each
of which is defined independently of r. Then the probabil-
ity that the truth value of Z,' Z, = Y° does not agree with
the truth value of (§,X1,X»,Y,Z1,2,) being a twin DH
tuple is at most 1/p. Moreover, if (g, X1,X5, Y,z},z}) is
a twin DH tuple, then 2, 2, =73 certainly holds.

Note that Lemma [I]is a statistical property. Espe-
cially, Lemma 1| holds without any number theoretic
assumption. To be precise, we consider the follow-
ing experiment of an algorithm Cheat with unbounded
computational power (not limited to PPT), where Cheat,
given a triple (g, X;,X,), tries to complete a 6-tuple
(g, X1, X5, Y, z},z}) which passes the “Trapdoor Test”
but which is not a twin DH tuple.
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. twinDH-test
Experiment; . o~ (1)

(& X1) — G (r,s) = Z5, X, = X' g°

G’ >(Y,Z,,Z,) « Cheat(g,X;,X5)

If 2,2, = Y5 N(g, X1, X5, Y,21,7Z,)
is NOT a twin DH tuple,

then return Win else return Lose
Let us define the advantage of Cheat over G as follows.

twinDH-test
AdVCyerg (D)

def . i -
= Pr[ExperlmenttC"‘,?eI;]?g test( 1) returns Win|.
Now we are ready to complement Lemma I}

Lemma 2 (Complement for “Trapdoor Test” [12]])
For any algorithm Cheat with unbounded computational
power, AdviDi et () is at most 1/p.

For a proof of Lemma [2} see Appendix [A]

4 Securing the Waters CP-ABKEM
against Chosen-Ciphertext At-
tacks

In this section, we describe our direct chosen-
ciphertext security technique by applying it to the
Waters CP-ABE [4].

Overview of Our Modification The Waters CP-ABE
is proved to be secure in the IND-sel-CPA game [4].
We convert it into a scheme that is secure in the IND-
sel-CCA game by employing the Twin Diffie-Hellman
technique of Cash, Kiltz and Shoup [12]] and the alge-
braic trick of Boneh and Boyen [13] and Kiltz [14].

In encryption, a ciphertext becomes to contain ad-
ditional two elements (dq,d,), which function in de-
cryption as a “check sum” to verify that a tuple is cer-
tainly a twin DH tuple.

In security proof, the Twin Diffie-Hellman Trap-

door Test does the function instead. It is noteworthy
that we are unable to use the bilinear map instead be-
cause the tuple to be verified is in the target group. In
addition, the algebraic trick enables to answer for ad-
versary’s decryption queries. Note also that the both
technique become compatible by introducing random
variables.
Key Encapsulation and Encryption. The Waters CP-
ABE can be captured as a CP-ABKEM: the blind-
ing factor of the form e(g, g)*° in the Waters CP-ABE
can be considered as a random one-time key. So we
call it the Waters CP-ABKEM hereafter and denote
it as CP-ABKEM,. Likewise, we distinguish parame-
ters and algorithms of CP-ABKEM,,, by the index cp,.
For theoretical simplicity, we first develop a KEM
CP-ABKEM.

www.astesj.com

4.1 Our Construction

Our CP-ABKEM consists of the following four PPT al-
gorithms (Setup, Encap, KeyGen, Decap). Roughly
speaking, the Waters original scheme CP-ABKEM.p,
(the first scheme in [4]) corresponds to the case k =1
below excluding the “check sum” (dy, d,).

Setup(A,U). Setup takes as input the security pa-
rameter A and the attribute universe U = {1,...,u}.
It runs Grp(A) to get (p,G,Gr, g, ¢e), where G and Gr
are cyclic groups of order p, e : GXxG — G is a
bilinear map and g is a generator of G. These be-
come public parameters. Then Setup chooses u ran-
dom group elements hy,...,h, € G that are associ-
ated with the u attributes. In addition, it chooses
random exponents aj € Zp,k =1,...,4,a € Zp and a
hash key n € HKey(A). The public key is published as
PK = (g, 8% hy,....hy,e(g,9)%, ..., e(g, )%, 1). The au-
thority sets MSK = (g“1,...,g%) as the master secret
key.

Encap(PK,A). The encapsulation algorithm Encap
takes as input the public key PK and an LSSS access
structure A = (M, p), where M is an [ x n matrix and
p is the function which maps each row index i of M
to an attribute in &/ = {1,...,u}. Encap first chooses a
random value s € Z, that is the encryption random-
ness, and chooses random values y,,...,9, € Z,. Then
Encap forms a vector ¥’ = (5,92,...,vy). Fori =1 to
I, it calculates A; = ¥- M;, where M, denotes the i-th
row vector of M. In addition, Encap chooses random
values rq,...,11 € Zp. Then, a pair of a random one-
time key and its encapsulation (x,1) is computed as
follows.

Put C'=g¢%Fori=1tol:C; :g“’\"h;(r;:),Di =g¢";
#’cpa = (A,C’,((Ci,Di);i = 1,...,l)),T <~ Hr](lgbcpa);

Fork=1to4:x; =e(g g)™"dy =«x[x3,dy =x5Ky;

(1, 9) = (x1, (lpcpa’ dy, dy)).

KeyGen(MSK,PK,S). The key generation algorithm
KeyGen takes as input the master secret key MSK, the
public key PK and a set S of attributes. KeyGen first
chooses a random t; € Zp,k =1,...,4. It generates the
secret key SKg as follows.

For k=1to 4:Kj = g% g, [, = g'
For x € S : Ky, = hik;

SKS = ((Kerkr(Kk,x;x € S)),k = 1,...,4).

Decap(PK, ¢, SKs). The decapsulation algorithm De-
cap takes as input the public key PK, an encapsula-
tion ¢ for an access structure A = (M, p) and a private
key SKg for an attribute set S. It first checks whether
S € A. If the result is Farsg, put £ =1. Otherwise, let
Is =p~1(S) c{1,...,1} and let {w; € Z,;i € I} be a set
of linear reconstruction constants. Then, the decapsu-
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lation ® is computed as follows.
Parse ¢ into (Pepa = (A, C’,((C;, Dy);i=1,...,

T < Hq(lpcpa);
Fork=1to4:

e(C', Ky /ﬂ (L, C

1615

)e(Dj, Ky p(i)) " = (g, 8)*

If KAlTKA3 S dl \Y4 KAZTKA4 ES d2,
then put € =1, else put £ = 7.

4.2 Security and Proof

Theorem 1 If the Waters CP-ABKEM,, [4] is selectively
secure against chosen-plaintext attacks and an employed
hash function family Hfam has target collision resistance,
then our CP-ABKEM is selectively secure against chosen-
ciphertext attacks. More precisely, for any given PPT
adversary A that attacks CP-ABKEM in the IND-sel-CCA
game where decapsulation queries are at most q, times,
and for any small attribute universe U, there exist a PPT
adversary B that attacks CP-ABKEM,,, in the IND-sel-
CPA game and a PPT target collision finder CF on Hfam
that satisfy the following tight reduction.
Advﬁ%ﬁ‘iﬁgﬁlm( AU)
(L U) +AdVEL o (A)+ %.
Proof. Given any adversary A that attacks our
scheme CP-ABKEM in the IND-sel-CCA game, we con-
struct an adversary B that attacks the Waters scheme
CP-ABKEM,, in the IND-sel-CPA game as follows.
Commit to a Target Access Structure. B is given
(A, U) as inputs, where A is the security parameter
and U ={1,...,u} is the attribute universe. B invokes
A on input (A, U) and gets a target access structure
A" = (M, p*) from A, where M* is of size I*xn*. B
uses A" as the target access structure of itself and out-
puts A*.
Set up. Inreturn to outputting A", B receives the pub-
lic key PKp, for CP-ABKEM.p,,, which consists of the
following components.

ind-sel-cpa

<Advy CP-ABKEM,

Pcha = (g’gafhlf-'-:hwe(g'g)a)-

To set up a public key PK for CP-ABKEM, B herein needs
a challenge instance: 3 queries its challenger and gets
a challenge instance (%, {¢,,). It consists of the follow-
ing components.

k=e(g,g)*
Pipa = (A,C" = g%, (( ).

Then B makes the rest of parameters of PK as follows.

C.,Dp)i=1,...,

Choose 1 < HKey(\) and take 7° « H,](l,bzpa);

Put (g, )" =e(g,8)%;
Choose y1, 7, < Z,, put e(g,g)*

Choose py, py < Z,, put e(g,8)™ = e(

e(g,8)™ = e(g,8)"2/e(g,8)™2" .
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1)), dy,d5);

" OR a random one-time key « € KeySp(J),

=e(g,8)?/e(g,8)"7;
g.8)/e(g,9)M",

Note we have implicitly set relations in the exponent
domain:

Ay =Y2—a1Y1, A3 =41 - T,
* *
ag=py—arT =y —(y2—a1y1)t

A public key PK for CP-ABKEM become:

(1)

PK = (PKcpa, e(g,8)*, e(g, 8)™, e(g,8)", 1)

Then B inputs PK into A. Note that PK determines
the corresponding MSK uniquely.

Phase 1. B answers for two types of A’s queries as
follows.

(1) Key-Extraction Queries. In the case that A issues
a key-extraction query for an attribute set S Cc U, B
has to simulate A’s challenger. To do so, B issues key-
extraction queries to B’s challenger for S repeatedly up
to four times. As replies, B gets four secret keys of the
Waters CP-ABKEM,p, for a single attribute set S:

Scha,S,k = (cha,kl cha,kf (cha,k,x;x € S)), k=1,...,4

We remark that, according to the randomness in the
key-generation algorithm of the Waters CP-ABKEM,,,,
all four secret keys SKpas,1,---,SKepa,s,4 are random
and mutually independent. To reply a secret key SKg
of our CP-ABKEM to A, B converts the four secret keys
as follows.

Ky = cha 1s Ly = cha 1 Ky = cpa,lw X € S;
g N .
Ky = ganpa 2’ Ly= cha 2 Kyx = chaZx’ X€S;
M =
K3=¢ cha3’ L3_cha3’ Ksx= cpa3x’ X€S;

Jo=y2T g T nt
=8 K a,4’ Ly= cha 4

Then 5 replies SKS = (K Ly, (Kg x5x € S));k=1,...,4)
to A.

K4X_Kpa4x’ x€S.

(2) Decapsulation Queries. In the case that A issues
a decapsulation query for (S,4y), where S C U is an
attribute set and ¥ = (pa, d1,d>) is an encapsulation
concerning A, B has to simulate A’s challenger. To do
so, B computes the decapsulation result £ as follows.

If S ¢ A then put & =1,

else
T (_Hr](lzbcpa>;
V=e(C,g)" ", 2y =di/e(C', @)1, Zy = dy/e(C, g)";

If 7, n 7, # Y72 (: call this checking TwiNDH-TesT)
then put € =« =1L
else

If T = t* then abort (: call this case ABORT)

. . > 1/(t-1"
elsek =¥y =23 (r=7),

Challenge. In the case that A queries its challenger
for a challenge instance, 3 makes a challenge instance
as follows.

Put dj =e(C”,g)",d5 =e(C
Put lzb* = (lPZpa’di’d;)'

’*, g)]'iZ
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Then B feeds (%, 1) to A as a challenge instance.
Phase 2. The same as in Phase 1.

Guess. In the case that A returns A’s guess b, B re-
turns b itself as B’s guess.

In the above construction of B, B can perfectly
simulate the real view of A until the case ABort hap-
pens, except for a negligible case, and hence the algo-
rithm A works as designed. To see the perfect simula-
tion with a negligible exceptional case, we are enough
to prove the following seven claims.

Claim 1 The reply SKg = ((Ki, Ly, (Kkx;x € S));k =
1,...,4) for a key-extraction query of A is a perfect simu-
lation.

Proof. We must consider the implicit relations (I). For
the index 2, we have implicitly set the randomness
ty = tepa2(—y1) and we get:

KZ = gYZK;P);IZ = g72 (galgutcpa,Z)_Vl

— g?’z (galgatz/(—yl))—yl - g7’2—0f17/1 gﬂfz - gazgﬂfz’

L2 — L7V1 — (gtcpa,Z)_yl — th’

cpa,2 —
_ V1 _plepa2y—y; _ b
Ko =Koty = ()7 =2, x €S,

For the index 3 and 4, see Appendix[B]

Claim 2 (e(g,g), e(8,8)™, e(g,8)%, Y, Zy, Z5) is
a twin Diffie-Hellman tuple if and only if (e(g g)

e(8,8)"1"e(g,8)™, e(g,8)"2"e(g, ), e(C',g), dy, dy) is
a twin Diffie-Hellman tuple.

Proof. This claim can be proved by a short calculation.
See Appendix i

Claim 3 If (e(g,9),e(g,8)*, e(g,8)%2, Y, Z|,Z,) is a twin
Diffie-Hellman tuple, then (Y, Z, Z,) certainly passes the
TwiNnDH-Test: Z, n Zy=Y72.

Proof. This claim is a direct consequence of Lemmal[}
O

Claim 4 Consider the following event which we name as
OVERLOOK;:

In the i-th TwiNDH-Tgsr, the following condition holds:
2.7 Z, = Y72 holds and
(e(8,8) e(8,8)", e(8,8)*, Y, 21, Z5)
is NOT a twin DH tuple.

Then, for at most q, times decapsulation queries of A, the
probability that at least one OVERLOOK; occurs is negligi-
ble in A. More precisely, the following inequality holds:

94
Pr[\/ OVERLOOK; ] < q4/p.

i=1

(2)

Proof. To apply Lemma we construct an al-
gorithm Cheat);; with unbounded computational
power, which takes as input (e(g, g), e(g, 9)*,e(g,2)%?)
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and returns (Y, 7, 7,) employing the adversary A as
a subroutine. Fig. [I|shows the construction.

First, note that the view of A in Cheat) is the
same as the real view of A and hence the algorithm
A works as designed.

Second, note that the return (Y,Z;,7,) of Cheat ) 1
is randomized in TABLE. Hence:

qd 1 1 qd
Z— Pr[OveErLOOK;]| = — ZPI‘[OVERLOOKi]
=1 1d 1d i3

_ twinDH-test
_AdVChEIZ[)L,u,G (A)

(3)
Third, applying Lemma 2to Cheat )y, we get:

AdvnPt (1) < 1/p.

Combining and , we have:

9d 9d
Pr[\/ OVERLOOK; | < ZPI’[OVERLOOKi]

i=1

twinDH-test qd
SqudeV‘;’Zg;tW,ES (1) < ?

i=1

Claim 5 The probability that OVERLOOK; never occulfs
in TwiINDH-TesT for every i and ABorT occurs is negligi-
ble in A. More precisely, the following inequality holds:

qd
Pr[(/\ —|OVERLOOKZ') A ABORT] < Advg}r-,Hfam(/\). (5)
i=1

Proof. This claim is proved by constructing a collision
finder CF on Hfam. See Appendix|D} O

Claim 6 The reply ® to A as an answer for a decapsula-
tion query is correct.

Claim 7 The challenge instance {* = (P, dy, d;) is cor-
rectly distributed.

Proof. These two claims are proved by a direct calcu-
lation. See Appendices [Eland [F] respectively. i

Evaluation of the Advantage of 5. Now we are ready
to evaluate the advantage of B in the IND-sel-CPA
game. That A wins in the IND-sel-CCA game means
that (%, 9" = (Pipa d},d3)) is correctly guessed. This
is equivalent to that (&,1¢p,) is correctly guessed be-
cause ¢, determines the consistent blinding factor
K" =e(g,g)* uniquely. This means that B wins in the
IND-sel-CPA game.

Therefore, the probability that 3 wins is equal to
the probability that .4 wins, OverLook; never holds
in TwinNDH-Testfor each i and ABort never occurs. So

as*
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Set up

Choose a€ Z, and hy,...,h, €G;
Put PKepa = (8,8% 1y by e(8,8));
Get (K", Ppa) < Encap ., (PKcpa, A%);

Give PK to A;
Phase 1

A

Update TABLE = TABLEU (Y, Z;, Z5);
Challenge

Choose k «— KeySp(1),b < {0,1};

If b =1 then put £ = " else put K = x;
Reply (%, ") to A;

Phase 2

The same as in Phase 1;

Return

In the case that A returns its guess b*;

Return (Y, 7, 7,).

Given (e(g, g),e(g,g)", e(g, §)"?) as input :

Initialize the inner state, put TABLE = ¢;
Get a target access structure A* «— A(A,U);
Compute the base g € G from (e(g, £), e);

Choose 1 <~ HKey(1) and compute t* < H, (¢p,);

Compute discrete logarithms @y, a; € Z, of e(g,£)"!, e(g,)** to the base e(g, g);
Choose piy, py «— Z,, put az = py —a T, a4 = p — a7

Put PK = (PKpa, (8, 8)2, e(g, )", e(8,8)™, 1), MSK = (g1, 872,83, g%4);

In the case that A makes a key-extraction query for S C U;

Reply SKs to A in the same way as KeyGen does using MSK;

In the case that A makes a decapsulation query for (A, = (¢Cpa,d1,d2), S);
Reply % to A in the same way as Decap does using MSK;

Compute Y= e(C’,g)T’T*,ZAl = dl/e(C’,g)ﬂl,Zz =d,/e(C’, g)'2;

In the case that A makes a challenge instance query;
Put dy = e(C™, )M, d) = e(C”, )2, " = (Yepa, d, d3);

Choose one triple (Y,Z;,Z,) from TABLE at random;

Figure 1: An Algorithm Cheat) ;; with Unbounded Computational Power for a Proof of Claim [4]

we have:

Pr[B wins]

d
—|OVERLOOKZ') A (—ABORT)]
i=1

q
=Pr[(A wins) A (

=Pr[.A wins]
qd
—Pr[(A wins) A ﬁ((/\ —|OVERLOOKZ') A (—|ABORT))]
i=1
q

>Pr[A wins] - Pr[ﬁ((/d\ —|OVERLOOKZ') A (—|ABORT))]

i=1
=Pr[A wins]

qd qd
—(Pr[\/ OVERLOOK; | + Pr[(/\ —\OVERLOOKi) A ABORT]).
i=1 i=1

Substituting (2), (5) and advantages into the above, we
have:

ind-sel-cpa
Ade,CP—ABKEMCPa (A U)
ind-sel- 44
ZAde%SSI\gEEM(/\,U) - ? - Advg}{,Hfam(A)'
This is what we should prove in Theorem O
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4.3 Encryption Scheme from KEM

It is straightforward to construct our encryption
scheme CP-ABE from CP-ABKEM. The IND-sel-CCA se-
curity of CP-ABE is proved based on IND-sel-CPA se-
curity of the Waters KEM CP-ABKEM,.

Setup(A,U). The same as Setup of CP-ABKEM.
Encrypt(PK, A,m). The same as Encap of CP-ABKEM
except that Encrypt multiplies m by the blinding fac-
tor « in the group Gr. Encrypt returns CT = (C =

m, P = (Yepar d1,d2))-

KeyGen(MSK, PK, S). The same as KeyGen of
CP-ABKEM.
Decrypt(PK,CT, SKg). The same as Decap of

CP-ABKEM except that Decrypt divides out C by the
decapsulated blinding factor €. Decrypt returns the
result 1.

4.4 Security and Proof

Theorem 2 If the Waters CP-ABKEM,, [4]] is selectively
secure against chosen-plaintext attacks and an employed
hash function family Hfam has target collision resistance,
then our CP-ABE is selectively secure against chosen-
ciphertext attacks. More precisely, for any given PPT ad-
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versary A that attacks CP-ABE in the IND-sel-CCA game
where decryption queries are at most q, times, and for any
small attribute universe U, there exist a PPT adversary B
that attacks CP-ABKEM,,, in the IND-sel-CPA game and
a PPT target collision finder CF on Hfam that satisfy the
following inequality.

ind-sel-cca
Advycp_ppe (A U)
ind-sel-cpa

qd
B,CP-ABKEM, (LU +AQVEE pypn(A) + )

SZ(Adv ,

Proof. Given any adversary A that attacks our scheme
CP-ABE in the IND-sel-CCA game, we construct an ad-
versary B that attacks the Waters KEM CP-ABKEM,, in
the IND-sel-CPA game as follows.

Commit to a Target Access Structure. The same as
that of CP-ABKEM.

Set up. In return to outputting A", B receives the pub-
lic key PK¢p, for CP-ABKEM p,. To set up a public key
PK for CP-ABE, B herein needs a challenge instance:
B queries its challenger and gets a challenge instance
(K, ¥¢pa)- The rest of procedure is the same as that of
CP-ABKEM, and B inputs PK into A.

Phase 1. The same as that of CP-ABKEM except that B
replies a decrypted message i1 to A for a decryption
query.

Challenge. In the case that A submits two plaintexts
(my,m]) of equal length, B makes a challenge cipher-
text CT" as follows and feeds CT" to A.

Choose b’ < {0,1}, put C* = my,&;
Put d = e(C”,g)",d5 = e(C”, g)"?;
Put CT" = (C*, ¢ = (Plpa, 4}, d3)).

Phase 2. The same as in Phase 1.

Guess. In the case that A returns A’s guess b, B re-
turns b as B’s guess.

Evaluation of the Advantage of 3. A standard argu-
ment deduces a loss of tightness by a factor of 1/2.
That is;

ind-sel-cpa

Ade,CP—ABKEMCPa (L)

1, indosel ‘
>SAdVALIER (4 U) - % ~AQVES e ()0

5 Securing the Ostrovsky-Sahai-
Waters KP-ABKEM  against

Chosen-Ciphertext Attacks

In this section, we describe our direct chosen-
ciphertext security modification by applying it to the
Ostrovsky-Sahai-Waters KP-ABE [11].

Overview of Our Modification The Ostrovsky-Sahai-
Waters KP-ABE is proved to be secure in the IND-sel-
CPA game [[L1]. We convert it into a scheme that is se-
cure in the IND-sel-CCA game by employing the Twin
Diffie-Hellman technique of Cash, Kiltz and Shoup
[12] and the algebraic trick of Boneh and Boyen [13]]
and Kiltz [14].

www.astesj.com

In encryption, a ciphertext becomes to contain ad-
ditional two elements (dy,d,), which function in de-
cryption as a “check sum” to verify that a tuple is cer-
tainly a twin DH tuple.

In security proof, the Twin Diffie-Hellman Trap-

door Test does the function instead. It is noteworthy
that we are unable to use the bilinear map instead be-
cause the tuple to be verified is in the target group. In
addition, the algebraic trick enables to answer for ad-
versary’s decryption queries. Note also that the both
technique become compatible by introducing random
variables.
Key Encapsulation and Encryption. The Ostrovsky-
Sahai-Waters KP-ABE can be captured as a KP-
ABKEM: the blinding factor of the form e(g, £)*** in
the Ostrovsky-Sahai-Waters KP-ABE can be consid-
ered as a random one-time key. So we call it the
Ostrovsky-Sahai-Waters KP-ABKEM hereafter and de-
note it as KP-ABKEM.,,. Likewise, we distinguish
parameters and algorithms of KP-ABKEM.,, by the
index p,. For theoretical simplicity, we first develop
a KEM KP-ABKEM.

5.1 Our Construction

Our KP-ABKEM consists of the following four PPT al-
gorithms (Setup, Encap, KeyGen, Decap). Roughly
speaking, the Ostrovsky-Sahai-Waters original
scheme KP-ABKEM.,, (the first scheme in [11]) cor-
responds to the case k = 1 below excluding the “check
sum” (dq,d,).

Setup(A,U). Setup takes as input the security pa-
rameter A and the attribute universe U = {1,...,u}.
It runs Grp(A) to get (p,G,Gr, g e), where G and G
are cyclic groups of order p, e : G — Gy is a bilin-
ear map and g is a generator of G. These become
public parameters. Then Setup chooses u random
group elements hy,...,h, € G that are associated with
the u attributes. In addition, it chooses random ex-
ponents ay € Zp,k =1,...,4,a € Zp and a hash key
n € HKey(A). The public key is published as PK =
(g,8%h1,...,hy,,e(g,8),...,e(g, )", ). The author-
ity sets MSK = (ay,..., ay) as the master secret key.
Encap(PK,S). The encapsulation algorithm Encap
takes as input the public key PK and a set S of at-
tributes. Encap first chooses a random value s € Z,
that is the encryption randomness. Then, a pair of a
random one-time key and its encapsulation (x, ) is
computed as follows.

Put C'=g¢%ForxeS:C,=h;
lzbcpa =(S,C",(Cy;x€8)), T« H,](l,bcpa);
Fork=1to4:«x; =e(g,8)"*;dy =x{Ks3,dy = k5Ky;
(,9) = (1, (lybcpal dy,dy)).
KeyGen(MSK,PK, A). The key generation algorithm
KeyGen takes as input the master secret key MSK,
the public key PK and an LSSS access structure A =
(M, p), where M is an I x n matrix and p is the function

which maps each row index i of M to an attribute in
U ={1,...,u}. For k =1 to 4, KeyGen first chooses
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random values 9y ,..., %, € Z, and forms a vector
Uk = (), Vk,2s---» Vk,n)- Then, for i =1 to [, it calculates
Aki = Uk - M;, where M; denotes the i-th row vector of
M, and it chooses random values ry; € Z,. KeyGen
generates the secret key SKp as follows.

Fork=1to4:Forli=1tol:
A i Tk,i _ i
Kii = 8" " hyiy Lii = 8™

SKA = (((Kk,i’Lk,i);i = 1,,l)k = 1,...,4).

Decap(PK, ¢,SKp). The decapsulation algorithm De-
cap takes as input the public key PK, an encapsulation
Y for an attribute set S and a private key SKp for an
access structure A = (M,p). It first checks whether
S € A. If the result is Fatsg, put & =1. Otherwise, let
Is =p }(S) c{1,...,]} and let {w; € Z,;i € I} be a set
of linear reconstruction constants. Then, the decapsu-
lation ® is computed as follows.

Parse 1 into (Pepa = (S, C’,(Cy;x €S)),dy, dy);
T — Hy(§cpa);

Fork=1to4:
#i= [ (€Ki elLiis Co)® = e(g,8)*™*
iEIS

If KAlTKA3 * d1 \Y KAZTKA4 * dz,

then put € =1, else put € = .

5.2 Security and Proof

Theorem 3 If the Ostrovsky-Sahai-Waters KP-ABKEM,,,
[11]] is selectively secure against chosen-plaintext attacks
and an employed hash function family Hfam has target
collision resistance, then our KP-ABKEM is selectively se-
cure against chosen-ciphertext attacks. More precisely,
for any given PPT adversary A that attacks KP-ABKEM in
the IND-sel-CCA game where decapsulation queries are
at most q4 times, and for any small attribute universe U,
there exist a PPT adversary BB that attacks KP-ABKEM.p, in
the IND-sel-CPA game and a PPT target collision finder
CF on Hfam that satisfy the following tight reduction.

ind-sel-cca
AV apkem(A U)

ind-sel-cpa

t 4d
B,KP-ABKEM,, (LU +AdvVer g (D) +

p
Proof. We will omit the description of the proof be-

cause the proof goes analogously to the case of CP-
ABKEM in Section ]

<Adv

5.3 Encryption Scheme from KEM

It is straightforward to construct our encryption
scheme KP-ABE from KP-ABKEM. The IND-sel-CCA se-
curity of KP-ABE is proved based on IND-sel-CPA se-
curity of the Waters KEM KP-ABKEMp,.

Setup(A,U). The same as Setup of KP-ABKEM.
Encrypt(PK, A,m). The same as Encap of KP-ABKEM
except that Encrypt multiplies m by the blinding fac-
tor « in the group Gr. Encrypt returns CT = (C =

mi, = (Pepar dy, d2))-
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KeyGen(MSK, PK,S). The same as KeyGen of
KP-ABKEM.
Decrypt(PK,CT,SKg). The same as Decap of

KP-ABKEM except that Decrypt divides out C by the
decapsulated blinding factor €. Decrypt returns the
result #1.

5.4 Security and Proof

Theorem 4 If the Ostrovsky-Sahai-Waters KP-ABKEM,,,
[11]] is selectively secure against chosen-plaintext attacks
and an employed hash function family Hfam has target
collision resistance, then our KP-ABE is selectively secure
against chosen-ciphertext attacks. More precisely, for any
given PPT adversary A that attacks KP-ABE in the IND-
sel-CCA game where decryption queries are at most g
times, and for any small attribute universe U, there ex-
ist a PPT adversary B that attacks KP-ABKEMp, in the
IND-sel-CPA game and a PPT target collision finder CF
on Hfam that satisfy the following inequality.

ind-sel-cca
AdV Y yp_apr (A U)

ind-sel-cpa

Sz(Ade,KP—ABKEMm

(LU)+AdVET o (1) + %).
Proof. We will omit the description of the proof be-

cause the proof goes in the same way as the case of
CP-ABE in Section[4.4] O

6 Efficiency Discussion

First of all, we remark that our individual modifica-
tion to attain CCA security is applicable when a Diffie-
Hellman tuple to be verified is in the target group of a
bilinear map e: G x G — Gy. Especially, it is applica-
ble even when an original CPA secure scheme is based
on asymmetric pairing [19], e : G; x G, — Gr. For ex-
ample, the Type 3 version [L9] of the Waters CP-ABE
scheme [4] can be found in [20]. Detailed discussions
and results on real implementations are found for the
case of CPA-secure ABE schemes [21) [20]. We note
here that the efficiency comparison below enables to
guess the implementation results of CCA-secure ABE
schemes via our modification.

We compare the efficiency of our CP-ABE with the
original Waters CP—ABECpa, and our KP-ABE with the
original Ostrovsky-Sahai-Waters KP-ABE,,. We also
compare the efficiency of our schemes with the CCA-
secure CP-ABE and KP-ABE schemes obtained by the
generic transformation in [10]. Here the generic trans-
formation [10] is considered in the case of a small
attribute universe, the delegation type [10] and the
Lamport one-time signature [22]. Table[1]shows these
comparison. Note that a hash function is applied to
generate a message digest of bit-length A before sign-
ing by a secret key of the one-time signature. Note
also, for simplicity, we evaluate the lengths and the
amounts of computation below in the case that an ac-
cess structure A is “all-AND” and an attribute map p
is injective (i.e “single-use” that is opposed to “multi-
use”).
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Table 1: Efficiency comparison of IND-sel-CCA secure ABEs ([10] and ours) with the original IND-sel-CPA

secure ABEs [4} [L1].

Scheme | L(PK) | L(SKs) | L(CT) | C(Enc) | C(Dec)
Generic transform [10], CP-ABE +41%(G) | +40%(G) | +3A%(bit) | +2A%exp.(G) | +2A’pair.(e)
Our individual modification (CP-ABE) | +3(Gr) x4 +2(Gr) +4exp.(Gr) x4
Generic transform [10], KP-ABE +4)1%(G) +0 +312(bit) | +2A%exp.(G) | +2A?pair.(e)
Our individual modification (KP-ABE) | +3(Gr) x4 +2(Gr) +4exp.(Gr) x4

1)
2)

A is the security parameter. (For instance, A = 224 or 256.)
L(data) denotes the length of the data. C(algorithm) denotes the computational amount of the algorithm.

3) + and x mean the increment and the multiplier to the length or to the computational amount of the Waters
CP-ABKEM,p, and the Ostrovsky-Sahai-Waters KP-ABE ;.
4) (G), (Gr) and (bit) mean that the lengths are evaluated in the number of elements in G, elements in Gt and

bits, respectively.

5) exp.(G) and pair.(e) mean the computational amount of one exponentiation in G and one pairing computa-

tion by the map e, respectively.

Our individual modification results in expansion
of the length of a secret-key and the amount of de-
cryption computation by a factor of four, while the
length of a public-key, the length of a ciphertext and
the amount of encryption computation are almost the
same as those of the original CPA-secure schemes. In
the case that the size of an attribute set is up to (% of)
the square of the security parameter A, the amount
of decryption computation of our CP-ABE and KP-ABE
are smaller than those of the CP-ABE and KP-ABE
obtained by the generic transformation [[10], respec-
tively.

7 Conclusion

We demonstrated direct chosen-ciphertext secu-
rity modification for ABE in the standard model
in the case of the Waters scheme (CP-ABKEM,,
CP-ABEp,) and the Ostrovsky-Sahai-Waters scheme
(KP-ABKEM.pa, KP-ABE p,). We utilized the Twin Diffie-
Hellman Trapdoor Test of Cash, Kiltz and Shoup and
the algebraic trick of Boneh and Boyen [13] and Kiltz
[14]. Our modification worked for the setting that
the Diffie-Hellman tuple to be verified in decryption
was in the target group of the bilinear map. We com-
pared the efficiency of our CCA-secure ABE schemes
with the original CPA-secure ABE schemes and with
the CCA-secure ABE schemes obtained by the versa-
tile generic transformation.
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Appendix

A Proof of Lemma/|2

The only one point to be complemented to the original proof (in
[12]) is that even for any algorithm A with unbounded compu-
tational power, the statement holds. This is because, condition-
ing on the input fixed values (g, X1,X>3), A only reduces the two-
dimensional freedom (r,s) € Z2 into the one-dimensional freedom
r € Zy, even if A correctly guesses the relation s = rxj +x3. O

www.astesj.com

B Proof of Claim[1]

For the index 3, we have implicitly set t3 = fcpa,3(—7") and we get:

_T* t ot _ *
K3 = gM K3, 5 =gl (g1 g"epa3) ™0 = gh1 =0T g5 = o030,

_ t
Ly =L, 5= (g'P) " =g",

™ fepa,3 ¥ f3
Ksp =K s, = (™)™ =h xes.

For the index 4, we have implicitly set t4 = tcpa,4(yl 7*) and we get:
2T VT —yo1* at, *
Ky =gl 72T Kop, 4 =gh772t (gt gttt

— g}lz—)fﬂ”gm 71 T*gﬂu — guz—(yz—aln)f*gam - gﬂz—azT*gau
— ga4gut4

Ly=I""

cpa,4

= (glepad)n T = gt

t *
Ky =K/\T = (RSP 17 Zpf4 xes)

cpa,4,x

C Proof of Claim

Suppose that we are given a twin DH tuple (e(g, g), e(g,
¥V,21,2,). Then, di/e(C’,)Vi = (e(g,8)% >S<T
the implicit relations , we have:

di = e(g,9)% (T e(g®, )i = (e(g,9)%1(*"

8)%1,e(g,8)%2,
T*), = 1 2. So, using

De(g, g)Hi)°

=(e(g )1 De(g, )T U = (e(g,9) Te(g ) 1+D)%,i = 1,2.
This means that (e(g,g), e(g,2)*1%e(g,2)*3, e(g, )% e(g,2)%4,
e(C’,g), dq, dp) is a twin Diffie-Hellman tuple.

The converse is also verified by the reverse calculation. O

D Proof of Claim[5l

To reduce to the target collision resistance of an employed hash
function family Hfam, we construct a PPT target collision finder
CF that attacks Hfam using A as a subroutine. The construction is
shown in Fig[2] (Note that the case CovvisioN is defined in Fig[2])

Note that the view of A in CF is the same as the real view of A
until the case CorListon occurs and hence the algorithm A works as
designed.

To evaluate the probability in Claim we consider the follow-
ing two cases.
Case 1: the case that ABort (T = 7%) occurs in B in Phase 1. In this
case, the target 7* has not been given to A. So A needs to guess 7*
to cause a collision 7 = 7*. Hence:

qd
Pr[Phase 1 A (/\ —~OVERLOOK; ) A ABorr] < Pr[Phase 1 A CoLLisiON].
i=1
(6)

Case 2: the case that ABorT (T = 7¥) occurs in B in Phase 2. In this
case, if, in addition to 7 = 7%, it occurred that {cpa = Ppa (and
hence C’ = C”), then it would occur that ¢ = ¢*. This is because
the following two tuples are equal twin DH tuples by the fact that
OVERLOOK; never occurs:

(e(g,8),e(8,8)1 Te(g, )3, e(g,8)* 2 e(g, €)™, e(C, 8), d1, d2),

(e(g,8),e(8,8)™1 " e(g,2)"3,e(3,8)2" e(g,8)™,e(C",g),d}, d3).
Hence both S € A and ¢ = * would occur. This is ruled out in

decapsulation query; a contradiction. So we have $cpa # P¢p,; that
is, a collision:

Pepa # lpzpa ANHy($epa) =T = = Hq(lpzpa)~
Therefore, if OvVErLOOK; never occurs for each i, then only decap-
sulation queries for which (e(g,g), e(g, )1, e(g,9)%2, Y, Z1, Z;) are
certainly twin DH tuples have the chance to cause a collision 7 = 7%,
as is the case in CF. Hence we have:

anT

qd
Pr[Phase 2 A (/\ —~OVERLOOK; ) A ABort] < Pr[Phase 2 A CoLLIsION].
i=1

7)
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Given A as input :

Set up

Initialize inner state;

Choose a polynomial size attribute universe I/ at random;
Get a target access structure A* «— A(A,U);

Run Setup,,(1,U) to get (p, G, Gr, g, €), PKcpa, MSKpa;

Get (%, Pepa) < Encapcpa(PKCpa,A*);

Output ¢,

Receive, in return,s <~ HKey(A) and compute 7* « H, (&, );
Choose ay, a3, a4 — Z,;

Put PK = (PKpa, €(g,8)"?,€(8,8)", e(8,8)™, 1), MSK = (g1, 82,83, g%4);
Give PK to A;

Phase 1

In the case that A makes a key-extraction query for S C U;
Reply SKg to A in the same way as KeyGen does using MSK;
In the case that A makes a decapsulation query for (S, 9 = (Pcpa, d1,42));
Reply & to A in the same way as Decap does using MSK;

If ® 21 and 7 = 7" (: call this case CoLLISION)

then return ¢p, and stop;

Challenge

In the case that A makes a challenge instance query;

Using MSK, put d] = e(g%1, C™)" e(g,C™), d; =e(g*?, C™)% e(g%,C"™),
Y= (lvbzpa’ di’ dE)’

Choose k « KeySp(1),b < {0,1};

If b =1 then put £ = " else put K = «;

Reply (%, ") to A;

Phase 2

The same as in Phase 1;

Return

In the case that A returns its guess b*;

Stop.

Figure 2: A PPT Collision Finder CF that attacks Hfam for the proof of Claim [5

Taking a sum of both sides of (6) and (7), we get: This is deduced as follows:
a4 2= (dl/e(C',g)m )1/(1_1*) _ ((e(g,g)‘” )5(1—1*))1/(1_1*) _ e(g,g)als~
Pr[(/\ —~OVERLOOK; ) A ABorrt] < Pr[CoLLisiON] = AdvEC}{,Hfam(/\)' -
i=1
]

F Proof of Claim[7]

A direct calculation with equalities (1) shows:

E Proof of Claim 6]

It is enough to prove that 5 =e(C",g)li = E(g,g)s*(a”qa(”z)) _ e(g,g)aiS*T*g(g,g)amz)s*,

When (e(g,9), e(g, )%, e(g,8)%2, Y, Z1,Z5) is a twin DH tuple, =12

o _ o V(r=T") _
k=2 = e(g,g)"!" holds. Hence ¢* = (¢pa, 4], d3) is legitimate and correctly distributed. O
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